

cows: Collections for wildcard strings

cows (collections for wildcard strings) is a Python
library that provides efficient collection implementations where equality
checking allows for wildcards in both the search string and the strings already
in the collection.

Motivation

cows was developed for a common problem in bioinformatics: given a set of DNA
sequences with the alphabet A, T, C, G, along with a wildcard
N (indicating that the base is unknown), find the unique sequences and
perform some operation on them. Examples of the operation are: counting how
many times each unique sequence occurs and generate a consensus sequence for
each unique sequence.

For a simple example, for counting unique sequences consider the following
input and desired output:

input output
----- ------
ATNG ATNG 2 # Comprised of ATNG and ATCN
ATCN ANNT 1
ANNT GTTC 1
GTTC

Notice this task requires comparing strings with wilcards not just in one
string, but in both. For example, matching ATCN to ATNG requires that
the third and fourth characters both be considered wildcards.

Naively one could pairwise compare the sequences, ignore the positions where
either contains an N, and check if all other positions match. However,
this quickly becomes intractable as it scales with the square of the number of
sequences.

cows uses a modified implementation of atrie (cows.trie) to reduce
this complexity to scale linearly with the number of sequences.

Provided Data Structures

Below are examples for the data structures included with cows. Please see the
documentation in Data Structure Reference for detailed
API information.

cows.List

A cows.list is a simple list implementation where insertion functions
similarly to the builtin list data structure, but accessor methods take
into account ambiguity. For example:

l = cows.List(['ABCD', 'ABC*', '****', 'DEFG'])

print(l.index('D***'))

The print statement outputs 2 since the first match for D*** is at
position 2 (with a value of ****).

cows.Set

A cows.set stores unique strings similar to the builtin set data
structure. Instead of using hashes for equality checks, the underlying
cows.trie is used to check if the pattern being inserted matches any
existing member of the set, taking into account wildcards in both. For
example:

import cows

s = cows.Set(wildcard='*')
s.add('ABCD')
s.add('*EFG')
s.add('T')
s.add('ABC*') # Matches ABCD, so not added
s.add('HEF*') # Matches *EFG, so not added

print(s)

Produces:

cows.Set(['*EFG', 'ABCD', 'T'])

cows.Dict

cows dictionaries are similar to the builtin dict type insofar as they are
key/value stores. They have a few key differences, however.

First, when setting a value, if there is an existing (potentially ambiguous)
match already in the dictionary, you can set an updater function to update
the existing value rather than simply overwrite it. Further, when inserting a
key/value pair, multiple existing keys may match the new key due to ambiguity.
Specifying a selector function at instantiation lets you define to which of
the matches the updater should be applied.

See cows.dictionary for more detailed information.

import cows

def increment(match, old_value, new_value):
 return old_value + new_value

my_dict = cows.Dict(updater=increment)
my_dict['ABC'] = 1
my_dict['DEF'] = 2
my_dict['AB*'] = 10

for k, v in sorted(my_dict.items()):
 print('{} --> {}'.format(k, v))

Produces:

ABC --> 11
DEF --> 2

cows.Trie

Note

Generally the cows.trie data structure shouldn’t be used
directly. Consider using one of its abstractions.

All other cows data structures are based on the cows.trie class. It
allows for ambiguous queries taking into account wildcards both in the query
string and elements in the trie.

An example of it’s use:

import cows

t = cows.Trie()
t['ABCD'] = 1
t['DE*G'] = 5

print('Matches for ABC* {}'.format(list(t.get_matches("ABC*"))))
print('Matches for D*FG {}'.format(list(t.get_matches("D*FG"))))

Outputs:

Matches for ABC* [('ABCD', cows.Trie(D, 1))]
Matches for D*FG [('DE*G', cows.Trie(G, 5))]

Performance

cows is performant, requiring O(n) time for insertions and lookups with
an input size of n strings. The naive approach which is currently quite
common involves pairwise comparing the sequences in a collection resulting in
O(n2), quickly becoming intractable.

Data Structure Reference

Dictionary

	
class cows.dictionary.Dict(selector=None, updater=None, **kwargs)

	Creates a dict-like object which checks has potentially ambiguous keys

This class provides a key/value store where the keys are strings and may
contain wildcards. Unlike the builtin dict type where setting a key
overwrites the existing associated value if it exists, this class allows
for a user-defined updating function, updater. Since a given key
may match more than one key in the Dict (due to wildcards), a selector
function will be passed the list of matches which will select which to pass
to updater.

	Parameters

	
	selector (func) – Called when __setitem__ is called with key
and a (possibly wildcard) match to key exists.

Must accept one argument, an iterable of (key, value) matches,
and return a single element from the iterator that will be updated
with updater.

	updater (func) – Called when __setitem__ is called with key and
value and a (possibly ambiguous) match to key exists.

Must accept three arguments match, current_value, and
new_value. match and current_value will be passed the
key and value returned by the selector and new_value will
be passed the value passed to __setitem__.

Returns the value to set the value associated with match to.

	**kwargs – Passed to underlying Trie

Example

import cows

def increment(match, old_value, new_value):
 return old_value + new_value

my_dict = cows.Dict(updater=increment)
my_dict['ABC'] = 1
my_dict['DEF'] = 2
my_dict['AB*'] = 10

for k, v in sorted(my_dict.items()):
 print('{} --> {}'.format(k, v))

This code would output:

ABC --> 11
DEF --> 2

Now consider a more complicated example:

...
my_dict = cows.Dict(updater=increment)
my_dict['ABC'] = 1
my_dict['*EF'] = 2
my_dict['GHF'] = 3
my_dict['G*F'] = 5

Here the setting of G*F matches both *EF and GHF. By
default, the first lexicographic match (in this case *EF) is chosen
for update:

*EF --> 7
ABC --> 1
GHF --> 3

However, this behavior can be overridden by passing a function as the
selector parameter. This function must take one parameter,
matches which yields (key, value) pairs for each matching entry
and return the key of the desired pair.

For example, this selector chooses the _last_ match when sorted in
lexicographic order:

...
def last_match(matches):
 return sorted(matches, key=lambda m: m[0], reverse=True)[0]

my_dict = cows.Dict(updater=increment, selector=last_match)
...

This will output:

*EF --> 2
ABC --> 1
GHF --> 8

	
__getitem__(key)

	Gets items matching key.

	Parameters

	key (str) – The key string to match

	Yields

	The values that match key. Order is not guaranteed.

	
__iter__()

	Yields the keys in the dictionary

	
__len__()

	Returns the number of elements in the dictionary.

	
__setitem__(key, value)

	Sets a value in the dictionary.

Sets key to value if no match for key already exists. If matches
do exist, one is selected with self.selector function and is
optionally updated with the self.updater function.

	Parameters

	
	key (str) – The key to set

	value (obj) – The value to set

	
items()

	
	Returns

	(key, value) tuples for each association in the dictionary.

	
keys()

	
	Returns

	The keys in the dictionary.

	
values()

	
	Returns

	The values in the dictionary.

List

	
class cows.list.List(iterable=None)

	A list for storing potentially ambiguous strings.

This class allows strings with ambiguous characters to be searched.
Insertion via append(), extend(), and insert()
function normally, simply inserting values into a list. Accessor methods
index(), count(), and __contains__() all take into
account ambiguous characters, however.

Example:

import cows

l = cows.List(['ABCD', 'ABC*', 'DEFG'])
print(l)
prints: cows.List(['ABCD', 'ABC*', 'DEFG'])

l.insert(2, '****')

print(l)
print: cows.List(['ABCD', 'ABC*', '****', 'DEFG'])

print(l.index('D***'))
prints: 2

print(l.count('A***'))
prints: 3

	
__contains__(key)

	Returns if key is in the list taking into account ambiguity

	
__iter__()

	Yields items in the list

	
__len__()

	Returns the number of elements in the list

	
append(value)

	Appends value to the list

	
count(value)

	Counts the number of times value occurs in the list.

This method takes into account ambiguity.

	
extend(iterable)

	Appends all elements in iterable to the list

	
index(value, start=None, end=None)

	Finds the first index of value in the list.

Determines if value is in the list taking into account ambiguity
and returns the first matching index.

If start and/or end is specified, only searches that portion of
the list using the slice operator. If value is not found raises a
ValueError.

Example

l = cows.List(['ABCD', 'ABC*', '****', 'DEFG'])

print(l.index('D***'))

The output of the print statement is 2 since the first match
for D*** is at position 2 (with a value of ****).

	Parameters

	
	value (str) – The value for which to search.

	start (int) – The minimum index to start searching.

	end (int) – The maximum index to search through

	Returns

	The minimum index that matches value

	Raises

	ValueError – If no matches for value are found.

	
insert(i, value)

	Inserts value at position i in the list

Set

	
class cows.set.Set(iterable=None, **kwargs)

	Creates a set-like object which checks for ambiguous inclusion.

This class provides a basic implementation of the set, a group of
distinct (unique) values. Uniqueness is checked based on ambiguous strings
so ABC* and *BCD would be considered equivalent.

	Parameters

	
	iterable (iterable) – An optional set of elements with which to populate

	set. (the) –

	**kwargs – Passed to underlying Trie

Example

import cows

s = cows.Set()
s.add('ABCD')
s.add('*EFG')
s.add('T')
s.add('ABC*') # Matches ABCD, so not added
s.add('HEF*') # Matches *EFG, so not added

print(s)

Produces:

cows.Set(['*EFG', 'ABCD', 'T'])

	
__iter__()

	Yields the elements in the set

	
__len__()

	Returns the number of elements in the set

	
add(element)

	Adds an element to the set.

	Parameters

	element (str) – The element to add.

Trie

	
class cows.trie.Trie(key=None, value=<object object>, wildcard='*', initialize=None)

	A trie which has accessors for ambiguous lookups.

This class is the basis of all other cows classes. It stores all
strings which have been inserted, not taking into account ambiguity. No
special methods (starting & ending with double underscores) take into
account ambiguity. To search the trie for ambiguous matches, use
get_matches().

Example

import cows

t = cows.Trie()
t['ABCD'] = 1
t['DE*G'] = 5

print('Matches for ABC* {}'.format(list(t.get_matches("ABC*"))))
print('Matches for D*FG {}'.format(list(t.get_matches("D*FG"))))

Outputs:

Matches for ABC* [('ABCD', cows.Trie(D, 1))]
Matches for D*FG [('DE*G', cows.Trie(G, 5))]

	Parameters

	
	key (char) – The character representing the trie node.

	value (object) – An arbitrary Python object representing the data at the
trie node.

	wildcard (char) – The character representing ambiguity.

	initialize (tuple) – Pairs of values with which to initialize the trie.

Note

Consider using the other cows data structures, which are more
intuitive, before using a Trie.

	
__getitem__(key)

	Gets an item from the trie.

Searches the trie for key. Note this does not take into
account ambiguity, and will only find an exact match. For ambiguous
searching, use get_matches().

	Parameters

	key (str) – The key to search for

	Returns

	The matching Trie node if key was found, else
None

	
__len__()

	Returns the number of nodes in the trie

	
__setitem__(key, value)

	Sets a key/value pair in the trie.

Sets the value of key to value. Note this will affect exactly
one trie node and does not take into account ambiguity. For a data
structure that implements setting with ambiguity use Dict.

	Parameters

	
	key (str) – The key to set.

	value (obj) – The data to associate with key

	
children_matching(prefix)

	Gets all child nodes matching the single character prefix. If the
character is a wildcard, it will return all children and if a wildcard
is included in the children, it will be included.

For example, if the children are:

[Trie('A'), Trie('B'), Trie('C'), Trie('*')]

where * is the wildcard, passing A to this method
will return:

[Trie('A'), Trie('*')].

	Parameters

	prefix (char) – A single character for which to search within
children.

	Yields

	Child(ren) matching prefix

	Raises

	ValueError – If prefix is not a string of exactly one character.

	
get_matches(key)

	Searches the trie for strings matching key.

Example

If the trie contains ABCD, ABCA, and CBC*, the
key ABC* will return ABCD and ABCA.

	Parameters

	key (str) – The string for which to search for matches in the trie

	Yields

	(key, value) tuples for nodes that match key.

Note

The order of yielded matches is not defined and is not guaranteed
to be consistent.

	
items(extract_values=False)

	Gets all items in the trie.

	Yields

	(node_key, node) pairs of all items.

	
keys()

	Yields the keys in the trie

	
values(extract_values=False)

	Yields the values in the trie

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cows	

 	
 	
 cows.dictionary	

 	
 	
 cows.list	

 	
 	
 cows.set	

 	
 	
 cows.trie	

Index

 _
 | A
 | C
 | D
 | E
 | G
 | I
 | K
 | L
 | S
 | T
 | V

_

 	
 	__contains__() (cows.list.List method)

 	__getitem__() (cows.dictionary.Dict method)

 	(cows.trie.Trie method)

 	__iter__() (cows.dictionary.Dict method)

 	(cows.list.List method)

 	(cows.set.Set method)

 	
 	__len__() (cows.dictionary.Dict method)

 	(cows.list.List method)

 	(cows.set.Set method)

 	(cows.trie.Trie method)

 	__setitem__() (cows.dictionary.Dict method)

 	(cows.trie.Trie method)

A

 	
 	add() (cows.set.Set method)

 	
 	append() (cows.list.List method)

C

 	
 	children_matching() (cows.trie.Trie method)

 	count() (cows.list.List method)

 	cows.dictionary (module)

 	
 	cows.list (module)

 	cows.set (module)

 	cows.trie (module)

D

 	
 	Dict (class in cows.dictionary)

E

 	
 	extend() (cows.list.List method)

G

 	
 	get_matches() (cows.trie.Trie method)

I

 	
 	index() (cows.list.List method)

 	insert() (cows.list.List method)

 	
 	items() (cows.dictionary.Dict method)

 	(cows.trie.Trie method)

K

 	
 	keys() (cows.dictionary.Dict method)

 	(cows.trie.Trie method)

L

 	
 	List (class in cows.list)

S

 	
 	Set (class in cows.set)

T

 	
 	Trie (class in cows.trie)

V

 	
 	values() (cows.dictionary.Dict method)

 	(cows.trie.Trie method)

 nav.xhtml

 Table of Contents

 		
 cows: Collections for wildcard strings

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

