
cows
Release v1.0.0

Jun 07, 2019

Contents

1 Data Structure Reference 1
1.1 Dictionary . 1
1.2 List . 3
1.3 Set . 4
1.4 Trie . 5

2 Motivation 9

3 Provided Data Structures 11
3.1 cows.List . 11
3.2 cows.Set . 11
3.3 cows.Dict . 12
3.4 cows.Trie . 12

4 Performance 15

Python Module Index 17

Index 19

i

ii

CHAPTER 1

Data Structure Reference

1.1 Dictionary

class cows.dictionary.Dict(selector=None, updater=None, **kwargs)
Creates a dict-like object which checks has potentially ambiguous keys

This class provides a key/value store where the keys are strings and may contain wildcards. Unlike the builtin
dict type where setting a key overwrites the existing associated value if it exists, this class allows for a user-
defined updating function, updater. Since a given key may match more than one key in the Dict (due to wild-
cards), a selector function will be passed the list of matches which will select which to pass to updater.

Parameters

• selector (func) – Called when __setitem__ is called with key and a (possibly wild-
card) match to key exists.

Must accept one argument, an iterable of (key, value) matches, and return a single
element from the iterator that will be updated with updater.

• updater (func) – Called when __setitem__ is called with key and value and a
(possibly ambiguous) match to key exists.

Must accept three arguments match, current_value, and new_value. match and
current_value will be passed the key and value returned by the selector and
new_value will be passed the value passed to __setitem__.

Returns the value to set the value associated with match to.

• **kwargs – Passed to underlying Trie

Example

import cows

def increment(match, old_value, new_value):
(continues on next page)

1

cows, Release v1.0.0

(continued from previous page)

return old_value + new_value

my_dict = cows.Dict(updater=increment)
my_dict['ABC'] = 1
my_dict['DEF'] = 2
my_dict['AB*'] = 10

for k, v in sorted(my_dict.items()):
print(f'{k} --> {v}')

This code would output:

ABC --> 11
DEF --> 2

Now consider a more complicated example:

...
my_dict = cows.Dict(updater=increment)
my_dict['ABC'] = 1
my_dict['*EF'] = 2
my_dict['GHF'] = 3
my_dict['G*F'] = 5

Here the setting of G*F matches both *EF and GHF. By default, the first lexicographic match (in this case *EF)
is chosen for update:

*EF --> 7
ABC --> 1
GHF --> 3

However, this behavior can be overridden by passing a function as the selector parameter. This function
must take one parameter, matches which yields (key, value) pairs for each matching entry and return
the key of the desired pair.

For example, this selector chooses the _last_ match when sorted in lexicographic order:

...
def last_match(matches):

return sorted(matches, key=lambda m: m[0], reverse=True)[0]

my_dict = cows.Dict(updater=increment, selector=last_match)
...

This will output:

*EF --> 2
ABC --> 1
GHF --> 8

__getitem__(key)
Gets items matching key.

Parameters key (str) – The key string to match

Yields The values that match key. Order is not guaranteed.

2 Chapter 1. Data Structure Reference

cows, Release v1.0.0

__iter__()
Yields the keys in the dictionary

__len__()
Returns the number of elements in the dictionary.

__setitem__(key, value)
Sets a value in the dictionary.

Sets key to value if no match for key already exists. If matches do exist, one is selected with self.
selector function and is optionally updated with the self.updater function.

Parameters

• key (str) – The key to set

• value (obj) – The value to set

items()

Returns (key, value) tuples for each association in the dictionary.

keys()

Returns The keys in the dictionary.

values()

Returns The values in the dictionary.

1.2 List

class cows.list.List(iterable=None)
A list for storing potentially ambiguous strings.

This class allows strings with ambiguous characters to be searched. Insertion via append(), extend(), and
insert() function normally, simply inserting values into a list. Accessor methods index(), count(), and
__contains__() all take into account ambiguous characters, however.

Example:

import cows

l = cows.List(['ABCD', 'ABC*', 'DEFG'])
print(l)
prints: cows.List(['ABCD', 'ABC*', 'DEFG'])

l.insert(2, '****')

print(l)
print: cows.List(['ABCD', 'ABC*', '****', 'DEFG'])

print(l.index('D***'))
prints: 2

print(l.count('A***')) # 3
prints: 3

__contains__(key)
Returns if key is in the list taking into account ambiguity

1.2. List 3

cows, Release v1.0.0

__iter__()
Yields items in the list

__len__()
Returns the number of elements in the list

append(value)
Appends value to the list

count(value)
Counts the number of times value occurs in the list.

This method takes into account ambiguity.

extend(iterable)
Appends all elements in iterable to the list

index(value, start=None, end=None)
Finds the first index of value in the list.

Determines if value is in the list taking into account ambiguity and returns the first matching index.

If start and/or end is specified, only searches that portion of the list using the slice operator. If value
is not found raises a ValueError.

Example

l = cows.List(['ABCD', 'ABC*', '****', 'DEFG'])

print(l.index('D***'))

The output of the print statement is 2 since the first match for D*** is at position 2 (with a value of ****).

Parameters

• value (str) – The value for which to search.

• start (int) – The minimum index to start searching.

• end (int) – The maximum index to search through

Returns The minimum index that matches value

Raises ValueError – If no matches for value are found.

insert(i, value)
Inserts value at position i in the list

1.3 Set

class cows.set.Set(iterable=None, **kwargs)
Creates a set-like object which checks for ambiguous inclusion.

This class provides a basic implementation of the set, a group of distinct (unique) values. Uniqueness is
checked based on ambiguous strings so ABC* and *BCD would be considered equivalent.

Parameters

• iterable (iterable) – An optional set of elements with which to populate

• set. (the) –

4 Chapter 1. Data Structure Reference

cows, Release v1.0.0

• **kwargs – Passed to underlying Trie

Example

import cows

s = cows.Set()
s.add('ABCD')
s.add('*EFG')
s.add('T')
s.add('ABC*') # Matches ABCD, so not added
s.add('HEF*') # Matches *EFG, so not added

print(s)

Produces:

cows.Set(['*EFG', 'ABCD', 'T'])

__iter__()
Yields the elements in the set

__len__()
Returns the number of elements in the set

add(element)
Adds an element to the set.

Parameters element (str) – The element to add.

1.4 Trie

class cows.trie.Trie(key=None, value=<object object>, wildcard=’*’, initialize=None)
A trie which has accessors for ambiguous lookups.

This class is the basis of all other cows classes. It stores all strings which have been inserted, not taking
into account ambiguity. No special methods (starting & ending with double underscores) take into account
ambiguity. To search the trie for ambiguous matches, use get_matches().

Example

import cows

t = cows.Trie()
t['ABCD'] = 1
t['DE*G'] = 5

print(f'Matches for ABC* {list(t.get_matches("ABC*"))}')
print(f'Matches for D*FG {list(t.get_matches("D*FG"))}')

Outputs:

Matches for ABC* [('ABCD', cows.Trie(D, 1))]
Matches for D*FG [('DE*G', cows.Trie(G, 5))]

1.4. Trie 5

cows, Release v1.0.0

Parameters

• key (char) – The character representing the trie node.

• value (object) – An arbitrary Python object representing the data at the trie node.

• wildcard (char) – The character representing ambiguity.

• initialize (tuple) – Pairs of values with which to initialize the trie.

Note: Consider using the other cows data structures, which are more intuitive, before using a Trie.

__getitem__(key)
Gets an item from the trie.

Searches the trie for key. Note this does not take into account ambiguity, and will only find an exact
match. For ambiguous searching, use get_matches().

Parameters key (str) – The key to search for

Returns The matching Trie node if key was found, else None

__len__()
Returns the number of nodes in the trie

__setitem__(key, value)
Sets a key/value pair in the trie.

Sets the value of key to value. Note this will affect exactly one trie node and does not take into account
ambiguity. For a data structure that implements setting with ambiguity use Dict.

Parameters

• key (str) – The key to set.

• value (obj) – The data to associate with key

children_matching(prefix)
Gets all child nodes matching the single character prefix. If the character is a wildcard, it will return all
children and if a wildcard is included in the children, it will be included.

For example, if the children are:

[Trie('A'), Trie('B'), Trie('C'), Trie('*')]

where * is the wildcard, passing A to this method will return:

[Trie('A'), Trie('*')].

Parameters prefix (char) – A single character for which to search within children.

Yields Child(ren) matching prefix

Raises ValueError – If prefix is not a string of exactly one character.

get_matches(key)
Searches the trie for strings matching key.

Example

If the trie contains ABCD, ABCA, and CBC*, the key ABC* will return ABCD and ABCA.

Parameters key (str) – The string for which to search for matches in the trie

6 Chapter 1. Data Structure Reference

cows, Release v1.0.0

Yields (key, value) tuples for nodes that match key.

Note: The order of yielded matches is not defined and is not guaranteed to be consistent.

items(extract_values=False)
Gets all items in the trie.

Yields (node_key, node) pairs of all items.

keys()
Yields the keys in the trie

values(extract_values=False)
Yields the values in the trie

cows (collections for wildcard strings) is a Python library that provides efficient collection implementations where
equality checking allows for wildcards in both the search string and the strings already in the collection.

1.4. Trie 7

cows, Release v1.0.0

8 Chapter 1. Data Structure Reference

CHAPTER 2

Motivation

cows was developed for a common problem in bioinformatics: given a set of DNA sequences with the alphabet A,
T, C, G, along with a wildcard N (indicating that the base is unknown), find the unique sequences and perform some
operation on them. Examples of the operation are: counting how many times each unique sequence occurs and
generate a consensus sequence for each unique sequence.

For a simple example, for counting unique sequences consider the following input and desired output:

input output
----- ------
ATNG ATNG 2 # Comprised of ATNG and ATCN
ATCN ANNT 1
ANNT GTTC 1
GTTC

Notice this task requires comparing strings with wilcards not just in one string, but in both. For example, matching
ATCN to ATNG requires that the third and fourth characters both be considered wildcards.

Naively one could pairwise compare the sequences, ignore the positions where either contains an N, and check if
all other positions match. However, this quickly becomes intractable as it scales with the square of the number of
sequences.

cows uses a modified implementation of atrie (cows.trie) to reduce this complexity to scale linearly with the
number of sequences.

9

cows, Release v1.0.0

10 Chapter 2. Motivation

CHAPTER 3

Provided Data Structures

Below are examples for the data structures included with cows. Please see the documentation in Data Structure
Reference for detailed API information.

3.1 cows.List

A cows.list is a simple list implementation where insertion functions similarly to the builtin list data structure,
but accessor methods take into account ambiguity. For example:

l = cows.List(['ABCD', 'ABC*', '****', 'DEFG'])

print(l.index('D***'))

The print statement outputs 2 since the first match for D*** is at position 2 (with a value of ****).

3.2 cows.Set

A cows.set stores unique strings similar to the builtin set data structure. Instead of using hashes for equality
checks, the underlying cows.trie is used to check if the pattern being inserted matches any existing member of the
set, taking into account wildcards in both. For example:

import cows

s = cows.Set(wildcard='*')
s.add('ABCD')
s.add('*EFG')
s.add('T')
s.add('ABC*') # Matches ABCD, so not added
s.add('HEF*') # Matches *EFG, so not added

print(s)

11

cows, Release v1.0.0

Produces:

cows.Set(['*EFG', 'ABCD', 'T'])

3.3 cows.Dict

cows dictionaries are similar to the builtin dict type insofar as they are key/value stores. They have a few key
differences, however

First, when setting a value, if there is an existing (potentially ambiguous) match already in the dictionary, you can
set an updater function to update the existing value, rather than simply overwrite it. Further, when inserting a key,
because of ambiguity, multiple existing keys may match. Providing a selector function lets you define to which of
the matches the updater should be applied.

See cows.dictionary for more detailed information.

import cows

def increment(match, old_value, new_value):
return old_value + new_value

my_dict = cows.Dict(updater=increment)
my_dict['ABC'] = 1
my_dict['DEF'] = 2
my_dict['AB*'] = 10

for k, v in sorted(my_dict.items()):
print(f'{k} --> {v}')

Produces:

ABC --> 11
DEF --> 2

3.4 cows.Trie

Note: Generally the cows.trie data structure shouldn’t be used directly. Consider using one of its abstractions.

All other cows data structures are based on the cows.trie class. It allows for ambiguous queries taking into account
wildcards both in the query string and elements in the trie.

An example of it’s use:

import cows

t = cows.Trie()
t['ABCD'] = 1
t['DE*G'] = 5

print(f'Matches for ABC* {list(t.get_matches("ABC*"))}')
print(f'Matches for D*FG {list(t.get_matches("D*FG"))}')

12 Chapter 3. Provided Data Structures

cows, Release v1.0.0

Outputs:

Matches for ABC* [('ABCD', cows.Trie(D, 1))]
Matches for D*FG [('DE*G', cows.Trie(G, 5))]

3.4. cows.Trie 13

cows, Release v1.0.0

14 Chapter 3. Provided Data Structures

CHAPTER 4

Performance

cows is performant, requiring O(n) time for insertions and lookups with an input size of n strings. The naive approach
which is currently quite common involves pairwise comparing the sequences in a collection resulting in O(n2), quickly
becoming intractable.

15

cows, Release v1.0.0

16 Chapter 4. Performance

Python Module Index

c
cows.dictionary, 1
cows.list, 3
cows.set, 4
cows.trie, 5

17

cows, Release v1.0.0

18 Python Module Index

Index

Symbols
__contains__() (cows.list.List method), 3
__getitem__() (cows.dictionary.Dict method), 2
__getitem__() (cows.trie.Trie method), 6
__iter__() (cows.dictionary.Dict method), 2
__iter__() (cows.list.List method), 3
__iter__() (cows.set.Set method), 5
__len__() (cows.dictionary.Dict method), 3
__len__() (cows.list.List method), 4
__len__() (cows.set.Set method), 5
__len__() (cows.trie.Trie method), 6
__setitem__() (cows.dictionary.Dict method), 3
__setitem__() (cows.trie.Trie method), 6

A
add() (cows.set.Set method), 5
append() (cows.list.List method), 4

C
children_matching() (cows.trie.Trie method), 6
count() (cows.list.List method), 4
cows.dictionary (module), 1
cows.list (module), 3
cows.set (module), 4
cows.trie (module), 5

D
Dict (class in cows.dictionary), 1

E
extend() (cows.list.List method), 4

G
get_matches() (cows.trie.Trie method), 6

I
index() (cows.list.List method), 4
insert() (cows.list.List method), 4
items() (cows.dictionary.Dict method), 3

items() (cows.trie.Trie method), 7

K
keys() (cows.dictionary.Dict method), 3
keys() (cows.trie.Trie method), 7

L
List (class in cows.list), 3

S
Set (class in cows.set), 4

T
Trie (class in cows.trie), 5

V
values() (cows.dictionary.Dict method), 3
values() (cows.trie.Trie method), 7

19

	Data Structure Reference
	Dictionary
	List
	Set
	Trie

	Motivation
	Provided Data Structures
	cows.List
	cows.Set
	cows.Dict
	cows.Trie

	Performance
	Python Module Index
	Index

